Completions of inverse M-matrix patterns

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Completions of P-matrix patterns

A list of positions in an n × n real matrix (a pattern) is said to have P-completion if every partial P-matrix that specifies exactly these positions can be completed to a P-matrix. We extend work of Johnson and Kroschel [JK] by proving a larger class of patterns has Pcompletion, including any 4 × 4 pattern with eight or fewer off-diagonal positions. We also show that any pattern whose digraph ...

متن کامل

A Matrix and Its Inverse: Revisiting Minimal Rank Completions

We revisit a formula that connects the minimal ranks of triangular parts of a matrix and its inverse and relate the result to structured rank matrices. We also address the generic minimal rank problem.

متن کامل

Generalized inverse of fuzzy neutrosophic soft matrix

Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. Aim of this article is to find the maximum and minimum solution of the fuzzy neutrosophic soft relational equations xA=b and Ax=b, where x and b are fuzzy neutrosophic soft vector and A is a fuzzy neutrosophic soft matrix. Wheneve...

متن کامل

M-Matrix Inverse problem for distance-regular graphs

We analyze when the Moore–Penrose inverse of the combinatorial Laplacian of a distance– regular graph is a M–matrix; that is, it has non–positive off–diagonal elements. In particular, our results include some previously known results on strongly regular graphs.

متن کامل

The M–matrix Moore–Penrose inverse problem for weighted paths

Abstract. A well–known property of an irreducible non–singular M–matrix is that its inverse is non–negative. However, when the matrix is an irreducible and singular M–matrix it is known that it has a generalized inverse which is non–negative, but this is not always true for any generalized inverse. We focus here in characterizing when the Moore–Penrose inverse of a symmetric, singular, irreduci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1998

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(98)10054-x